Predicting Patient Survival from Longitudinal Gene Expression
نویسندگان
چکیده
منابع مشابه
Predicting Cancer Patient Survival with Gene Expression Data
For decades, scientists accepted that the nucleic acids, DNA and RNA, packed with thousands of protein-coding genes, were the sole purveyors of genetic information; all inherited traits, from eye color to shoe size, must be stored and expressed through nucleic acid mechanisms. But prions are an exception. These misshapen proteins are capable of growing, replicating, and infecting other cells—th...
متن کاملPredicting Gene Expression from Sequence
We describe a systematic genome-wide approach for learning the complex combinatorial code underlying gene expression. Our probabilistic approach identifies local DNA-sequence elements and the positional and combinatorial constraints that determine their context-dependent role in transcriptional regulation. The inferred regulatory rules correctly predict expression patterns for 73% of genes in S...
متن کاملGene expression profile for predicting survival of patients with meningioma.
Current staging methods are inadequate for predicting the overall survival of meningioma. DNA microarray technologies improve the understanding of tumour progression. We analysed genome wide expression profiles of 119 meningioma samples from two previous published DNA microarray studies. The Cox proportional hazards regression models were applied to identify overall survival related gene signat...
متن کاملPredicting Cellular Growth from Gene Expression Signatures
Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly co...
متن کاملPredicting gene expression from heterogeneous data
The complexity of gene expression and the elucidation of the mechanisms involved in its regulation constitute an extremely difficult challenge in modern bioinformatics despite the amount of information made recently available by high-throughput biotechnologies and genome-wide investigations. In this contribution we investigated the effectiveness of ensemble systems for gene expression predictio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Applications in Genetics and Molecular Biology
سال: 2010
ISSN: 1544-6115
DOI: 10.2202/1544-6115.1617